56 research outputs found

    Performance Of SRF Systems In Large Scale Applications

    Get PDF

    A Dual Digital Signal Processor VME Board For Instrumentation And Control Applications

    Full text link
    A Dual Digital Signal Processing VME Board was developed for the Continuous Electron Beam Accelerator Facility (CEBAF) Beam Current Monitor (BCM) system at Jefferson Lab. It is a versatile general-purpose digital signal processing board using an open architecture, which allows for adaptation to various applications. The base design uses two independent Texas Instrument (TI) TMS320C6711, which are 900 MFLOPS floating-point digital signal processors (DSP). Applications that require a fixed point DSP can be implemented by replacing the baseline DSP with the pin-for-pin compatible TMS320C6211. The design can be manufactured with a reduced chip set without redesigning the printed circuit board. For example it can be implemented as a single-channel DSP with no analog I/O.Comment: 3 PDF page

    High Power Test of RF Separator for 12 GEV Upgrade of CEBAF at Jefferson Lab

    Get PDF
    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate enough to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, several options including the extension of existing normal conducting (NC) and a potential 499 MHz TEM-type superconducting (SC) cavity design have been investigated using computer simulations. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test to 4 kW is required to confirm the cavity’s operate-ability at these elevated gradient and power levels. We have assembled a 2-cell cavity, pumped down to 2.0·10-9 torr using ion pump and confirmed the low level RF performance. A high power test is in progress and will be completed soon. The detailed numerical and experimental results will be discussed in the paper

    Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals

    Get PDF
    Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpkTg737) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca2+ primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca2+ derived from both extracellular and intracellular stores. This flow-induced Ca2+ signal was less robust in cilium-deficient monolayers. Flow-induced Ca2+ signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca2+. Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na+) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases

    The Jefferson Lab Superconducting Accelerator

    No full text
    • …
    corecore